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FOREWARD

This report is adapted from the paper read at the Harvard
Statistics Colloquium February 1962, The author acknowledges his
thankfulness to Drs. George A. Miller and Paul Kolers and to
Mr. Shiro Imai.

This paper is the third in a series reporting work performed for
the Decision Sciences Laboratory, Electronic Systems Division,
L. G. Hanscom Field, Bedford, Massachusetts.

This is Report Number 7 from the Division of Mathematical Psychology,
Institute for Research, 257 South Pugh Street, State College,

Pennsylvania.
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ABSTRACT
\

Trial-to-trial changes in the proportion of human subjects
predicting the occurrence of one of two events in a complex sequence
of binary events (probability learning) are analyzed in terms of
several simple models. The direction of change predicted by linear-
operator reinforcement models (Estes, Bush and Mosteller) is wrong on
about 75% of the trials. A no-learning model, a time-dependent decay
model, and a cycle-dependent decay model are used to provide some
insight into the nature of probability learning.

Some suboptimal procedures for estimating parameters of
stochastic processes are compared. The method of minimum absolute error

B

is recommended as being very useful. >
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MICROSTRUCTURE OF GUESS PROCESSES
Masanao Toda

A couple of years ago, Professor Mosteller gave a presidential address
to the Psychometric Society entitled "The mystery of the missing corpus"
(Mosteller, 1958). In a slightly different context, I sometimes feel about
my own research on guess process that I am trying to solve a like mystery
called "The Case of a Deceptive Beauty.'" But unlike Sherlock Holmes or
Perry Mason, I am no genius as a detective. I am just a plain,; ordinary man
with dogged perseverence, and I have just succeeded 1in getting a confession
from my suspect, that deceptive beauty, known as guess process; also as
probability learning. And I am sti)l wondering, whether this confession
might be another deception, and I am just making a fool of myself by
triumphantly talking about this confession. Anyway, the confession is not
yet consistent, and I am not yet at the stage of getting a successful trial

However, here is one thing about which 1 can talk with complete
confidence; this deceptive beauty, probability learning, has a very
complicated character, no matter how plainly simple she may appear, and no
matter how many psychologists are honoring her simplicity by sonnets in the
form of simple stochastic learning theories

My plan for today's talk on my unfinished detective story is like this

First, I will introduce her to you formally with appropriate courtesy,
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second, I will tell you something about her shadowy inside life when she 1s
out of sight, and then, finally, I will talk scmething about police sclence
or parameter estimation

I think most of you are familiar with guessing experiment 6 Or two armed
bandit experiments So, I will show you just an example of *he experimentai
procedure. Imagine a deck of, say, playing cards. The exper.menter shows
these cards one by one from the tcp of the deck. Now,K the experimental Ss
task is to predict the color of each card each time before the card is
shown. This is just a kind of game, and Ss are encouraged 'c maximize the
number of correct predictions That s all Suppose the total number of Ss
is N. Suppose the number of Ss whc predicted "black" on trial « 1is n
Then I call n‘/N the guessing quotient with respect to "black" response on
trial < By plotting these guessing quotients on all the tria.s. we obtain
the guessing curve You will see examples of guessing curves in figures 1,
2, and 3. Please look at the Figure 3 first The short lines attached
to the top and the bottom lines of the graph represent the arrangement of
the cards used in the experiment. There are twc short lines atvached to the
leftmost part of the top line, which are then fcllowed by a blank And
wherever there is a blank on the top line you will find a short line on
the bottom iine These three short lines then mean that the “irs® two cards
were blue, and the third was red. So ycu wilil see that the arrangement of
the cards, or the sequence of events, used here 1is a random sequence with
probability m(B) = .75 for obtaining blue. Now the ordinate of this graph
shows the values of guessing quotients with respect o predic’ion of blue
Three groups of Ss were given this same sequence. S50 the three points
corresponding to the first trial indicate that in each group about 50 or

60% of the Ss predicted blue as the co.or of the first card.



After Ss made their responses, they were shown the first card wh.ch was
blue, and each of them recorded his prediction and the color of the card .n
the answer sheet, and then they proceeded to predicting the cclior of “he
next card.

Now, I think some of ycu who are familiar with guessing exper.mencts
might be puzzled by this figure. Guessing curves you find in psychoictg:ca.
journais do not usually look like this, Usually. they start off at abcu:
0.5, and smoo*hly and monotonically approach a certain asymptorte But here
:n Figure 3, there 1s nothing smooth and ncthing monotonic., This reminds
me of a joke- Mona Liza had a tcothache and Leonardo had an 1deal mode .
Now you can pull out all the teeth of *he original guessing curves like
those presented in Figure 3, by averaging guessing quotients cwver each
block of ten or more trials. And this 1s whart usualiy 13 dcne by
psychological artists; o: dentists. and as a result we get mysTerious.y
simple and smooth guess.i g curves, Averaging across biocks of *rials is.
of course; a completely .egitimare procedure 1f these struct.res of the
curves are just ocutcomes ot rardom fluctuations But random fluctuatiouns
cannot be reproduced so regularly as occurs 1n Figure 3 as well as 1n
Figures .1 and 2.

However 1 coulid bardly do justice to the beauty cf "he averagecd
guessang curves 1t 1 said 1t s z2.: due *c the plastic surgery of averagp.ry
There 1s 3 mvstery something beyond that, and .t 1s the -a.ue of The
asymptcte *o which smecoth aseraged guessing curves approach As rar as
experiment 1s -onducted under ordirary ccnditions, 1.2, when Ss are juuT

guessing and no* making money in proportich to *he number of correc:
predictions, the asymptcotic valuve ct P'B the yuessing quc~ient wivh

respect *o the event B, 1s =lmcs® aiways approximately egua: *o '8’

no matter what “he value (B! Inis erfect :s cailed prebab:rlivy matznicyg

on
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This result has puzzled many people. since to ma*:h response
probability with event probability 1s co obviously non cprimai if Ss are
maximizirg the number of correct pred:ct:ons and 1f they know the evert
sequence 1s random, Suppose (B} > 1 n(B!'  Then,K S can ger *!B] as the
mean number of correct predictions 1f he always predicted blie. But .{ he
matches his prediction probability with r B! then hx:- mean number of hits
reduces to ¢ ¢ I )2 < Equal>ty hclds cniy fer - x

The reactions to this effect among psycholcgists whc were 1nterested
in this process were not unanimous A group of pecp.e :inc_.uding myse.f
were rather deeplv annoyed by this apparent irrationa.ity . and a*tempted to
prove either or both of the following two hypc*heses ' Ss were nc
simply maximizing the plain, unweighted <otal number of correct predictions,
(2) Ss were not perceiving the event sequence as random One cf my Ss +cld
me that he could not resist the temptation cf trying *c hit the jackpot by
predicting a very infrequent event If this kind of ureven utilities for
more frequent and less frequent events is responsiblie for prchbaebiality
matching, we should be able to get rid of probabi:ity matching by inducing
an even utility distribution by means of paying Ss money :in prcportion to
the correct predictions, This hypothesis has bteen very well ccnrirmed by

a couple of experiments dcne by different pecp.e Obvious.y Ss preferred

real pennies to 1maginary jackpots

*PROCF. n > | 1 But 1/2 &¢ « v, 0 . ‘12 Then we have
rd e (1 ) = (172 9 €¥2 4 (1/2 €< 10 ¢ 7¢¢ for the mean number
of hits per trial under the probabili+y matching strategy On +he wther
hand, the mean number of hits per trial urder the pure s-ravegy of
predicting B all the time is n = 7/2 » The .a*ter & greater than the
former since 2(m  (n2 ¢ (1 mj?1) = 1 . 2¢ 7 37 26 T 2




The reaction of another group of people was a kind ¢ artistic
inspiraticn As a consequence, we are now able tc appreciate a ccup.ie
of masterpieces of mathematrical ar+.

The greatest of all is, according to my cpinicn, Estes’ model
1359), since he uses only *wc parameters to describe guessing

Estes

¥

[#3)

curves. I am using wrong words. He cails his model a theory and he 1

not describirg, bu% prediciing,; sirce a thecry stould pred:icr, not descrite

-
eSS

hH

You may wonder if 1t is possible to predict withcuar describlicg. Buv E
did it, and I will shcw you how this stunt was dcre. Hig basic assumptiop

will be stated like this:

pi’,=)\y)&¢ak.f' AV 0 < A<
His origina! expression (Estes, 195C) is different from this, but these are
equivalent. Now, P, is the probabii:ty of predicting a specified event cn
trial «. a is a function taking the vaiue ' or 0 according as the
specified event bas occurred cr ror on vrial 4 respectively. In psycho.cgy
this type cf theory belongs tc a ciass of reinforcement ‘heories, since the
event obtained on triai 4 reinforces the responce oriented t> that
perticular event A is a paramerer, and anctner parameter 1n this mcdel

.s obviously p,

Now *his equation has & fcrm darectly applicable *c x2ndividoal guess.ng
quotients and it shculd te trve if a reirnforcement thecry =»f this typz -«
to have any val:idity at al., that indivigual guessing QuUOTIen™ 1IN geners.
increases when the spccified response is reinforced and cecreases when the
alterrative response :s reinfcrced I tested this assumpticn with my gaa
and the assumption was confirmed only 1n about 25% of ~he who.e set of 200

trials Now Estes did ro' use .ndividual grecssing quotients bDut onLy the.ur



averages So, in this equation, a is also replaced by 1ts average, cr 1its
expectaticn T Once this was done, it 1is really easy to obtain an explicit

form for P,y

Since 0 < A < I, now we have

Thus the probability matching effect ‘s predicted even though its
prediction concerning the direction of change of guessing quotlent 1s
wrong 75% of the time.

Parsimony in the number of necessary parameters 1s certainly a virtie
in a good theory. But; according tc an oriental belief a virtue 1is
something hard to obtain So, I like to take a hard way, starting with a
purely descriptive model which has as many parameters as possible to rake
care of various information involved in the data. The number of parameters
may then be reduced if one 1s iucky erough to find that some of the
parameters are redundant

I should say that this had been my belief before I got into the presen®
problem  Then, I found out that I was toc optimistic I1f 1 use a mode.
with toc many parameters, I would saimply bg stuck with The impossibility or
parameter estimation; and furthermore there 1s no purely descriptive mode
A mocel becomes a theory once the model 1s app.ied to real data Sc, ~here
is always a danger in using a single model for the purpose cf analysis of

data, even 1f the model is primarily criented *cward e description  Tha-




much was the lesson I obtained from my frustrating experience of trial and-
errcrs and I am now just hopirg that, afrer hearing my experience, some of
you could tel. me if there 1s a better strartegy

Now .et me get back tc the data. The three sequences used in my first
experiment ; the results of which are shown in Figures 1, 2, and 3, are
named "long-run sequence," "medium-run sequence’ and ''uneven probability
sequence."” The long-run sequence is characterized by n'X! = (.50 and

also by the conditional probabiliity nx(X‘ = ,70 {X = "Blue" and "Red").

The medium-run sequence 1s characterized by ={Xl = 0.50 and nx!X) = 47
The third sequence is characterized by n(B) - :B?Bi = .75 aud n(R) =
wR(R) "..25

Now all the three sets of guessing curves shown in Figures 1, 2 and
3, have definite but different structures, If I want to say anything more
specific, however 1 need a descriptive model. And at rthat stage of my
research, there was none., Even the most well formed descriptive modeli of
learning, the Bush-Mosteller model /Bush & Mosteller, 1955),6 has too
strong a set of assumptions to be applicable to these structures

This much seemed to be obviocus 1f a sequence cf responses had a
structure, and 1f the structure was different for different event sequences,
then the structure of response sequences should somehow correspond to the
structure of event sequences This hypothesis was easy *c cherck
particulariy as I had an impression that Ss were respconding principal.y tc¢
run length., Although ~his could not be the cnly factor responsible for
the response structure, I decided to emp.cy a simple piict model which
while it was very poor 1in 1ts descriptive capacity and just absurd as a
theory, had the virtue of giving no *rouble in estimating 1ts parameters

and couid serve to test my hypothesis about run length.

10
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Noew, my first pilot model may be called no {eawung, run-deperdent
modef. Its basic set of assumptions 1s as fcllows The length of run of
the same evert which Ss have just observed is the orly factor that
determines their response probability. This run leng*h dependent response
probab:ility is assumed constant throughcut the course cf the experiment.
That 1s, there is absolutely nc learning. Let me give you an example ard

define the notaticn I am geirg to use Let the sequence of events be

like this
. _000XX0000X00 -~ -~=~-~-events
run class 123456789012 ™ ~- --«=trials
1 | 1 23 uy/
l
2 1 2.3 >
3 i 2 \\ cycles within each
\ run class
M 1.}
S

Any taal on which S is 1in the state of just having observed a run of
length n 1s said to belong to the aun class n A serial number 1s
artached to each trial belonging toc *he same run class in the order of its
appearance in the whole sequence 6 and 1s called the cycfe number of <he
trial within the run class Pi’n‘ denotes the prcportion of Ss (guessing

quotient ) who predicted on trial « the sam event obrtained con tria. 4«

ard n indicates that trial { belongs to run class n In general. p‘(n‘

1s used to denote the thecretical prediction for p‘fnf Now, wha: the

rc learning model amounts to 1s that p ‘n' = ¢, wnere ¢, is a constant for
A .

ea'h n independent of trial number «
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Fip. 10 Values of the estimated rarareters used in the
MNo-learniny “odel fit, Pxn(f) is the probability
ot predictin; the same event as the preceding,
frllowing a4 run of length n.
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for he purpose cf testing this model I ccnducted the second
exper Tent in which the long-run sequence and the medium run sequence are
ex-enced to 200 <rials, and a short-run sequence chara:terized Dby
5 X £0 and 'xlX‘ = ,25 is added to them. The resu.ts are showr in

T.g.res - throvgh 2 along with the ccrrespending no-learning model

Cb.icus.y, this assumption of nc-learning 1is absurd S¢, to keep
2™ eye on 1ts absurdity,; 1 estimated the parameters ¢, separately for the
rirst .00 trials and the second 100 trials of each sequence. The
est.maed paremeter values are plotted in Figure 10. Ffrom these figures
7 1t a.. tce clear that this absurd mcdel worked very well

Te sum up the conclusions drawn from this pilo® analysis® First, Ss
4. :ferent.a.ly respond to different lengths of preceding run. Secondly.
there .8 a .earning effect as seen in Figure 10 and this effect 1s most
pronounced ir long-run sequence and very little in short-run sequence

Now .et me prcceed to my next pilot model, which now contains an
¢ <menT of learning, so that p‘lnl is no longer constant. And this model
w1.. te called Decay Model 1 or tume dependent decay moded. The exact

jescz . praion of this model is given as folicws

DECAY MODEL I  TIME-DEPENDENT DECAY MODEL
L ‘n probability of predicting the same event as occurred on the just
preceding trial. This probab:lity depends upon which run class
n the trial 4 belecngs to
L n . response weight for predicting the same event as occurrecd on *he
just preceding trial.
on -esponse we.ght for predicting the cppcsite event to the cne

cczurred on the just preceding *rial




A a parameter, 0 < A < !
u a parameter, 0 < y
v a parameter, 0 < v
a‘."n) = 1 if ( belongs to run class n and the same event occurs on trial 4
= 0 ovherwise
Bi(") = 1 if ¢ belongs tc run class n and the cppcsite event sccurs on
trial 4

= 0 otherwise

The folilowing system of equations holds for each value of

(1) pilnl = uL.(n)/lenl

(2) u.'Llnl = "4;"" + lenl

(3) u“,'n! = AuLlni * "L("“
() v‘.',lni = Av‘.(nl . B"n‘\

As obvious from equations (1) through (4), the trial-by-*rial change
in response tendency is not directly described in terms of p as it is ip
the Bush-Mosteller or Estes models. but it 1s described in terms of
response weights 4 and v, and response probability p is given by normalizing
u with respect tc the total weight w

This type of model is ofren called 2 non-linear mcdel, bur I wculd
rather like to call it a quasi linear medel, since 1t has many
characteristics in common with linear medels

Now let me explain abcout vhis Decay Model I characterized by Eqe (i
through (4}, Take a trial < for example The *rial may be preceded by a
run of length m so that it will belong to run class m Suppose that tle
maximum run length appearing in the *cotal event sequerce ics m  Then
model assumes that at least m pairs of response weights « and v

potentially exist. among which cnly such pair which -orresponds to

- 20
N



n. uln) and vin), determines P the probability of predicting on trial
the same event as occurred on trial 4-! Now, suppose that the same
event obtained again on the trial 4. Then these m pairs of response

weights changes on the next trial in such a way that

(u(’lu, . Au(?“

{ v(l)", . A\«("L

{“‘"’4’.01 = Au(n'L L

LV('K"-'” = Avin)
1 =

ulne ,4'.0' u(n!(

(
v(mHL.., s “‘"’4‘

That is, all the weights except uin) decrease by constant fraction A,
and u'n) ordinarily increases. This change in response weights is

reflected in pln) in such a way that

pi.,(l) . p‘l‘!
Piorl2) = p(2)
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pL',(n) /i p

p(',(n'll = P n+l,

Sc, all the p(n) except one remain unchanged on each trial. The covert
proless of constant decay of response weights, however K has the fol.owing
effect As the interval between two successive cycles within the same run
class *ends longer, the impact of additionai cons*art u or + upcn the
resultant weight becomes greater. and therefcre the accompanying change
in pln) becomes alsoc greater

Now let me give you just an intuitive interpretarion of this model
Suppose that S is classifying information given by each observation of
event according to the length of th- just preceding run. Suppose that
u(ln) and v((n) can be interpret:d ac the subjectivelv evaluared amounts
of evidences respectively supporting the predictions 'same' and "opposite"
corresponding to the category n Then this model means that S 1is employing
a strategy for information book-keeping such that the whole stock of
evidences .s depreciated by a constant fracticn A each time he proceeds one
trial fecrward, Obvicusly,. this strategy has o« cerraia sense in view of
adaptation

! did not use all the data for *he purpcse of Testing th:s Decay Model I
but used the first 50 trials of the long run sequen-e and the first £0
tr1ais of the medium-run sequence These were the trials on which the
data of the first experiment and the seccnd experiment could be pooied
Since this Decay Model 1 was another pilct model I wanted first to try out
the mcdel with the most precise part of the data. for the same reason I did

rot use precise, but time consuming, me.hod for parameter estimation, but




attempted tc find plausible lcoking parameter values through trial and
error. The result of the fitting is shown in Figure 11 The parameter

values used here as follows

e 926 wL(n‘ =100 {fcen - 7,2 and 3}
ui(')-SO’v.") 50, uyi2j = 2.5, {v,i2) » 7.5)

uiH.' = 3.0 lvyi3) = 7.0), v+ 7.4 andlv = '

(Those parameter values given in parentheses are derived from others
v s 1 is chosen since we can chcose the unit of weight arbitrarily. ! Now,
in Figure 11, horizontal broken lines represent correspond:ng nc-learning
model predictions This no-learning modei fi® uses 51X parameters and
Decay Model I also uses six independent parameters As ycu see, a
considerable improvement of data description has been made by moving from
the fiprst pilot model to the second

Having been encouraged by this success. I tried to fit rhis model
to the remaining part of the da*a. The result was that the fit was by
and large worse than in the no-learning.mcdel There may be two possible
alternative interpretations of this result. One is that the success of
Decay Model I on the first 50 trials is an artifact. and *he ovher is
that some charge inSs response structure takes place at abour 50th tr.oal
I am now inc.ined to believe the second possibiilty for a couple of reesons,
but I will nocr go intc that issue now

Because c¢f this partial success cf the zime dependent Jdecay mode., !
wanted to try another type of decay model which may be ca led "Cycle
dependent Decay Modef " or simply Decay Modef 11 The model 1s my third

pilot model and its formal description 1s as follcws
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DECAY MODEL II. CYCLE-DEPENDENT DECAY MODEL

In the Decay Model II, the meaning of subscript { of variables is so
changed that it now indicates the cycle number of the run class n instead
of serial trial numoer as it is in Decay Model I
A a parameter, 0 < A
< a parameter, -1 < ¢ < |
aL(n) = 1 if the same event as that on the just preceding trial occurs on

cycle 4 of run class n

* (0 otherwise

w

=
"
-

if the opposite event to that on the just preceding trial occurs
on cycle 4 of run class n,

= ( ctherwise

The following system of equaticns holds for each value of n,

(5) p‘(ul = ui(n)/wilnl
(6) wilnl = “4’.(") . v‘,(nl
7 w

‘.llnl = Aullnl . (’0claitnl

8y ui.,ln) = Av‘(u) . ('oz)Bilu!

Now, the major difference of this new decay model from the first one
is “hat response weights do not decay on each trial, but decay only on each
cycle belonging to the same run class. Then this is certainly a simpler
medel th;n the first. Another difference is a minor modification of

notation
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Before entering into the application of this model; I should mention
another type of analysis I did. All the mathematical models so far applied
to guess process including my own assume that response probabilities are
affected only by physical events and not by Ss’ own responses. But it is
psychologists’ common sense that responses are affected by previous
responses too, The existence of this effect in guess processes was first
demonstrated by Hake and Hyman (1953),

As a matter of fact. the effect of success and failure on preceding
trials upon the response found in my data is really complicated. The nature
and amount of eftect differs from sequence to sequence and from run class
to run class., Furthermore, the effect does not disappear even at the end
of 200 rrials, And a trouble with linear and quasi-linear models is that
they are very rigid about their probability matching property and their
descriptive capacity tends to be poorer and poorer as trial proceeds. So
after finding this effect, 1 was again forced to use part.al data. I
recalculated guessing quotlents on each trial for only those Ss whase
prediction on the jus® preceding trial was success, and denoted them
as P+, Analogously. 1 calculated P for those Ss who failed on the just
preceding trial, These P+ and P- are plotted in Figures 12 through 16 for
the three sequences and *he corresponding run classes 1 and 2. And I
applied the Decay Model II only to P+, since by and large P+ is more

reliable than P-, ‘I am making full use of the excuse that I am dealing

with pilot models.) The results of the fit of Decay Model II to P+ are also

1 -



plotted in the same figures. The parameter values used are as folliows:

A s 0.942, w,(') =5, w,(Z) =0, uz(l) =2.5and ¢ = 0 (uI(Z) is
automatically 0 since w,(2) = 0.1 Here ¢ = 0 actually means that I gave
up using €, and therefore . that ¢ is dropped from the model. So, the real
number of parameters I used to fit the model to the partial data used

if four. Taking into account this small number of parameters used I could
say that the fit of the model to the data is moderately good, although the
fit to the first 50 trials is worse than that of Decay Model I.

Anyway, I think I have definitely demonstrated one thing through the
applications of these pilot models, guessing processes are by no means
simple, The apparent simplicity of averaged guessing curves is a complete
deception. Meanwhile, I still have a hope that someday I wiil be able to
solve this mysterious case.

Now, let me shift to my second theme of the present talk. So far
it has been a detective story. From now on, it will be a speech on police
science. That is;, I want to talk about the parameter estimation of
Decay Model II.

I think the most valuable information I obtained through the course
of parameter estimation are not the final outcomes of the parameter
estimation but the things I learned through the course of estimation. In
books on statistics we find how optimal procedures of parameter estimation
are to be carried out, e.g.. how one can use the maximum likelihood methcd
or the method of least square. But I can find nowhere what are the next
bests when the bests are not practicable. In Bush and Moste.ier's bcock, the
authors point out that these best methods can te applied t~ linear models
only in very special cases If they are :mpracticable for linear models;

how much worse fer quasi-linear models. So what 1 have done first was to
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learn how ma*hematical psychclogists estimate their parameters. What I
discovered was awfui. I tentatively named cne cf the most popular methods
they used "the method of simple sum," which may be described as follows

for *he sake of simplicity. let us consider a single parameter model
for a psychological process. The model gives a sequence of functions
g (e, §.1el, ..., 6&!3‘ , where 4 1s the trial number and 6 is the
parameter, On the other hand, there 1s a sequence of data values X, X,,
xL . Since nobcdy can hope that the model completely fits the data, we
should expect a deviation between mcdel and the data on each trial, Let me

denote the deviation é(" ard ca.l 1t the error on trial 4., Then we have a

csystem of equations

Vs 5.(0) 4= 1
X 6&(6 6.(6), 4 Z,

Now if we sum each s:ide of the equations. over all the trial number, we

obtain

v 1 le) = ] e te)
<

A 4

If we estimate 6 by putiing *he righ® hard side >f this equation zero, we
have the method of simpie sum Now, what this method of simple sum really
amounts to 1s ~o make toral positive ercsors and tctal negative errors be
balanced Ard some examples will eas:ily show you how wrong a conclusion
one might be ied to urder certain rather commen circumstances. Take, for

example <uch a single parameter model as




g l0) = 1 - ™

For various values of 6, we obtain a family of theoretical curves as shown
in Figure 17. Now suppose that we obtained data which, although increasing
monotonically, has an asymptote less then 1. Then the absurd result we
obtain is that, the more the number of trials the experimenter runs the
less the estimated 6 obtained by the method of simple sum as illustrated in
Figure 18. One may easily find this kind of absurd theoretical curve in
psychological journals. A more dramatic but more artificial example will
be given as follows:

Consider the following model:

g 000 1 - e nar 2, ,m

-(n-m)e
e ot} ,memel m2, .., Im

Consider an extreme case such that the obtained data exactly follow
the model:

25 casyp M

[

x =1 -¢M00r .
n

. e'(n-m)eo. n=mt, Ay

Any reasonable parameter estimation procedure should give 9 = 8o,
where 6 is the estimated 8, But the method of simple sum can give no
estimate of 0, since any value of 5 satisfies the equaticn 2 GLIG) =0

4
Suppnrse now that we had one more value or trial Zme! which 1s no* equai to
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~Ime )0 (mi119 v F
& O but equa. To @ 3 . where 6, 5 0 Then the method of s:mple

sum give: the estimate 6 ~ 8 That :s, *he estimate 1s determined just by
& sinugle i1rregular valve Cne may wender who would use such an obviously
absurd methcd., The facr 1s that this is one of the most popular parameter
estimaticn methods wher the best methods are impraciscabie

This method ¢f simple sun appears under varicus disguises when the
numbter of parameters is move then sme., Whether 1t is used cr not can easily
be checked, however by seeing i1f ~he equarion used to estimate a parameter
1§ equiva.ent TO put*ing unweighted sum of errcrs equa: to 0

Ncw, z=frer making this awful disccvery, I artempted to obrain a set
of criveria for vhe admissibili~y of subsptimai methods of parameters
esvimalion To do this, I cthose the mettcd c¢f least square as the ideal;
the vioser "o 1t is the better since the maximum likelihood method is
usva:ly further eway in 1ts practi-abliity

A ycu know rthe method of lea:s® cguare minimizes the sum of square
deviaticrs Therefore ; 1D cur rovatico the parameter es*imation equation

1§ expressed as

d .
ds « l& 6« e 0
Py
O}y
_§ it ix § :0 T h e & lei. 0
'} A e i W

le" me a.. 4§ '8 ‘& 18 the eanon functain of ~he me+*hod of least square
A

17 ceems *v me 'hi” most methods of pararmeer estimaticn have *their




characteristic error functions of the form:

wi(e) 64‘6}

and the estimation of parameter 6 is made by putting the funcricn équa: 10

zero. And I think the inherent nature of a method of parameter estimation

is best demonstrated by the sequence of weights wL(G)W fer the method cof
least square, uu}e‘ = gs»é&(e)a and for the method of simple cum, wL(e! !
for all 4

Now, from the nature or the least square method error funcricn; I
derived two criteria for the admissibility of suboptimal methcds  The
first one corresponds to the absolute value of 54 (e); The absolute value
of weight of an admissible methcd should te great for such « whe»e the
prediction 64(6‘ is reiatively sensitive to the variation of €, and
it should be small where 64(65 1s relatively insensitive. Ncw you see
that the absurdity of the method of simple sum demonstrated by my first
example is due to its failure to comply with this criterior

The next critericn for the admissibility i1s concerred with the sigp
of 6£'(6); the sign of admiss:ble weigh® w‘le‘ shouid be differert wher
SL‘(O) is positive and when 6£ (! is regative. If a method satisiies
this criterion, the kind cf absurd.cy 1 have shcwn in the second exsemp.e
could never happen.

With these *wc criteria. I a‘*temp*ed to cbrain admissible mevhod too
esrimating parameters of my Decay Mcdel Il i picked vp A for the
parameter to be estimated Zirst, since p‘fA W,, U, £' beccmes a.mese
independent of all the parameters c*her than a for iarge «  Then

immediately 1 fcurnd a difficulty, There was no practicable and admissable

(A
[(§ ¢



methed for estimating A

the method 0§ s«mple ratio

The only practicable methcd I found may be called

(You see I hare everything that is simple.)

This method is almcst as popular as the method of simple sum, and 1ic

slightly better thar rhe la**er since the former satisfies the second

o)
(%

ritericr, But :7 does rct satisfy the first criterion of admissibility

Let me brief_.y describe this methcd since 1 was bound to use at.

:15 cdefined as before

=
¥

Acccrding tc the definition of Decay Model 1I

p .

| \ Y/ (aw.e1)
IR LR ILIN ()d‘ *a /(AW‘O

Pefine eaumple ratao kL in such a way as

» [? y ) . ) . .
\

3 if a. = |

4L

i 'l 2
// k‘ T L R P Tl VTS LEAL TR A

{ if a <0

N 4

Now, by sucbstituting P, and P.,1 4P the definiticen of k( ty the above

express.cn of p , and the analcgous express.cr of p we obtain
4v r 4

11
v

A aw

AW
< A4

irrespective of the va'ue of




Now from the definitions of Decay Model 1I we can easily derive

w, = A‘” woe (1 - A")/(! = A) s 1/ 2 ) 4+ 0 (AL 1)

So, by substituting this into kip we obtain
R. = x+ 0.2
4

30, by assuming ki = A for large {, we cbrain

(’ o X‘:”) b A(' ki X‘«) ® - 6(¢1 + AGL’ 1f Qa 3 '

x"", =4 Ax‘- = 6‘:’, - AGL.‘ if a. = 0

We obtain either one of the twc types of equations for each large 4 so
that by taking sum of each side of these equations across large 4 and
putting the right hand side, which 1s the error functicn cf this methed,
equal to zero; we can estimate ).
Now, let us take a look at the error function of *hkis method. From
the above equations you can easily see that the weights of the error function

have the following form

w, »=t (! Aj, if a, ,
4 e <

e (1« A

be
la ]
Q

R fa
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So each weigh: can take only one of the twc values, and the difference

between these two values 1s great since *he estimated A is fairly close to
'. So in estimating A, what this method 1s actually doing is taking into
account only those data on the trials where the theoretical curve inflects.
Ard the worst aspect of this 1s that those dre the trials where, by and
large. p& is most sinsensitive to the variations of &,

Anyway . this 1s what I have done for estimating i, and the estimated
L's are fairly similar for u and v. fcr different sequences and fcr
different run classes. However. a slight increasing tendency with trial is
observed in the estimated value of A.

Crce A is estimated, the nest problem is the simultaneous estimation
of the remaining three parameters, «. W and €, But since this appeared
to me technically impecssible, I first dropped ¢ from the model by assuming
« 0 Then 2* is possibie; at ieast in principle, to estimate w1 and w1
simultarecusly. since they can be separated by utilizing ki again this time
for small values of 4, Ffrom now on. 1 will nct go into technical details;
except a few points of major interest.

By utiliizing kL and again applyirg *the method of simple ratio, we

cbtair ar equartion for estimating w, of which the error function 1is

characterized by weights of the following form

where




Now the point here is that this time we can improve this methcd te
some extent by taking a icok at the error function of the least square
method., That is; even though the lest square method :tse.f is not
applicable; we can modify the error functicn of a subcptimal method so
as to beur more resemblance to the error functicn of the least square

method. As a result of this kind cf modification, we obtain

s 1
Ww. = Zl& ,”t\‘\z)(r ‘ XL Z)o

and you see the éi”s or 1nit:al tria.s are more heavily Wweighted than
before.

Now suppose that I obtained an estima*te of . by this method, aithough
this 1s actuelly a false statement, Thea the only remaining perameter &

can be estimated, for the first time, directly by the methcd cf least

square.

However, since the modified method of simple ratio didn t work, |
dropped u, too, from the model by assuming 1* equal to w}/2 for run class 1
and attempted tc obtain the least square estimate of W, by success:ve
approximation. The method 1s very simple. The reason why “he ledst squiare
method is usually impracticable is that the weight cf the errcr function,
6(’ (6), is usuaily a fairly complicared functicn of €. Butr 'f we rep.ace

this unknown 6 :n 6& (8} by its arbi*rary estimate 6% then tne

estimation equaticn

§

(0% & o 0
A £
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is often solvable. Then, if the estimate 6 cbtained by sclving his
approximate equaticn 1is considerably different from 8%, you will replace
8% by 6. and repeat the same procedure, alvhough I think repetitior 1is
ustally unnecessary since it is easy to get a fairly gocd estimate 8° to
start cut just by a trial-and-error calculation.

Anyway, this method again failed in my case. Any by nuw the reascn
for ail the failures 1s clear. The guessing quotients on the first coup.e
of cycles are completely beyond the descrip*tive framework cf Decay Mccel 11,
(For a probable reascn, see Toda, 1962.) And since all those :improved
estimation methods give heavy weights to those initial trials where the
theoretical values are most sensitive tc the variation cf w , 1t 1s no
wonder that I ended up with utterly incomprehensible estimates of w

Anyway, these failures led me to an entirely new iine cf apprcach, I
attempted to use the method of minimum absolute error, that is, tc estimate
parameters by minimizing the sum of absclute errors_ and 1t turned out
that this method is very useful. At any rate, the method of minimum
absclute error should at least be as gocd as the me*thod of least squares
and furthermore, it has a very nice property of disregarding excepticnal
da*a values. But this does not mean that this methcd innccently gives us
estimated values no matter how exceptional values may exist ir the cda-e
On the contrary. it gives us precise information through the ccurse cr
estimation about which values are except:ional and in what way they are
exceptional. Unfortunately, I have nc time to go into details of thas

method. But ] am ccnvinced that this relatively unknowrn method is worth

more attenticn by the yusers of stochast:c models
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